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Abstract 

Tie idea of replacing a divergence constraint by a divergence boundary 
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and sufficient conditions for the equivalence of the formulations are given. 
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1    Introduction 

A well known problem in computational electromagnetics iß the appearance of 
"spurious modes" arising from incorrectly imposing divergence constraints. To 
avoid imposing these constraints directly, which is difficult, it has been suggested 
that they need to be enforced only on the boundary of the domain ([5], [7]). This 
has some significant advantages. For instance, the vector Helmholtz equation 
with a divergence constraint on the field can then be solved using standard finite 
element spaces instead of more complex spaces of edge elements. Furthermore, 
as we will show below, the divergence boundary condition can be treated as a 
natural boundary condition. 

It is essential to know when the interior and boundary formulations of diver- 
gence constraints give the same result and that is the main aim of this work. We 
shall show that the formulations are equivalent if and only if the scalar Poisson 
equation with any smooth right hand side and Dirichlet boundary conditions 
has a solution in H2. When this is not true, a simple minded application of 
divergence boundary conditions as in [5] and [7] will normally give incorrect 
solutions with a nonzero divergence. 

Our results for systems with the interior divergence constraint are obtained 
by formulating the problem in the space V defined in the next section. This 
approach avoids enforcing the divergence constraint explicitly — it is automati- 
cally satisfied. We provide a proof of this fact for interior problems; for exterior 
domains see [4]. Unfortunately, H1 is not dense in V in general. To use stan- 
dard H1 finite elements we impose the divergence condition on the boundary 
and formulate the problem in the space Hgt C H1 defined below. We discuss 
the relationship between the V and H^t formulations in some detail. 

To avoid relatively unimportant technical issues we will give proofs of these 
results for the vector Poisson equation subject to tangential boundary conditions 
and a divergence constraint. In the end we will show how they may be extended 
to other problems including the vector Helmholtz case of electromagnetics. 

The next section gives the strong forms of the governing equations and the 
reasoning behind the use of divergence boundary conditions. It also contains a 
formula for the boundary divergence, which is used to reformulate the divergence 
boundary condition as a natural boundary condition in H1 setting. Section 3 
sets up a weak form for the equation with the interior divergence constraint 
and proves the coercivity for the weak form, which follows from a compact 
embedding result for vector fields. Sections 4 and 5 prove coercivity for the weak 
form which uses divergence boundary conditions. This time, coercivity follows 
from a close and somewhat surprising connection with the previous weak form. 
This result is based on a trace theorem proved in section 5. 

The coercivity results of sections 3-5 are used in section 6 to prove equiv- 
alence of the strong and weak formulations (Theorem 2). We also discuss in 
what sense the boundary divergence condition is satisfied and prove a formula 
for calculating the divergence on the boundary (Lemma 10 in section 6). Section 
7 contains a discussion of when one can say a priori that the interior and bound- 
ary divergence formulations are equivalent, and when they are not equivalent 



(i.e. may have different solutions for the same data). It also contains an exam- 
ple showing nonequivalence of the two formulations for nonconvex polyhedra. 
In section 8 we give the modifications to include the Helmholtz equation and 
briefly mention some other extensions. Section 9 mentions some implications 
for numerical approximations of the problem. 

2    Formulation of the problems 

Assume that il is an open hounded subset of R^, N = 2 or 3, with a connected, 
Lipchitz boundary I\ 

We will consider the relationship between the problems 

-Au = f    infl, 
divu = 0     infi, (1) 
uxn = 0   on T 

and 

-Au = f    infi, 
div u = 0     on T, (2) 

u x n = 0   on T. 

We assume that f 6 L2(Q,)N and the compatibility condition divf = 0 is 
satisfied. Superficially it seems that the two problems are equivalent. Indeed, 
if u is a solution of (1), it is clearly a solution of (2). Conversely, if u is a 
solution of (2), then taking the divergence of the first equation of (2) we get 
that A (div u) = 0, and since div u = 0 on T, one might argue that div u = 0 
in n, so u is a solution of (1). This is basically the reasoning in [7]. But it 
might not always be true. The difficulty is caused by insufficient regularity 
of the solution. Laplace's equation with Dirichlet boundary conditions has a 
unique solution in H1 {Q), but in general we cannot assume that div u 6 H1 (fi). 
It may be only in L2(Q) and the homogeneous equation for div u may have a 
nonzero solution in L2(Ü) (this happens, for example, in the case of domains 
with reentrant corners). 

In order to discuss the the relationship between (1) and (2) we first have to 
make explicit in what function spaces we look for the solutions. It turns out 
that the natural space for (1) is 

V = {u € L2{Q)N | divu € L2(Ü), curlu e L2{ti)N\ uxn|r = 0}, 

where N' = 3 if N = 3 and N' = 1 in N = 2. The standard scalar product in 
V is 

(u, v)v — / u- v +curlu • curl v + div u div v. 
in 

On the other hand, the natural space for (2) is 

H^t{Ü) = {ue H1^)" | u x n|r = 0} 



with the scalar product 

(u,v)i= / u-v + Vu-Vv. 
Ja 

We will show that while problem (1) has a unique solution in V, it may not 
be solvable in H^t(Q), and while problem (2) has a unique solution in H^(ß), 
the solution may not be unique in V. We will also discuss in what sense the 
divergence boundary condition in problem (2) is satisfied. 

It is shown in section 6 (under the additional assumptions that T is piecewise 
C1,1 and the jump condition given in (6) is satisfied) that problem (2) (in 
H^t{fl)) is equivalent to: find u € Hgt{Cl) such that 

-Au = f in n, 

— ■ n + KU- n = 0   on V, (3) 
an 
u x n = 0 on T, 

where K is the curvature of the boundary (K = div n), which is denned almost 
everywhere on T.  This follows from the result (see Lemma 10 for the precise 
formulation) 

du     . . 
divur = 7— ■ n r + KU ■ n r- 

on 
It is convenient to begin with the weak formulations of problems (1) and (3). 
The next three sections deal with the coercivity of the corresponding weak forms. 
Following this we show the equivalence of the strong and weak problems and 
then examine the relationship of problems (1) and (3), and show the equivalence 
of problems (2) and (3). 

3    Weak Formulation in V 

Let fJ and f be as above. To derive the weak formulation of (1) in V we substitute 
curl curl u for -Au in (1), multiply the first equation by v (belonging to V), 
the second by div v and integrate by parts using the boundary condition. For 
u, v € V define 

a (u, v) = / curl u ■ curl v + div u div v. (4) 
Jn 

Then the statement of the weak problem is: find u € V such that 

ffl(u, v) = / f ■ v Vv € V. (5) 
Ja 

The only hypothesis of the Lax-Milgram lemma which is nontrivial to check 
is the coercivity of a on V. It follows from the next compact embedding theorem. 
The embedding is actually a corollary of the regularity result in [1], where It is 
proved that V C Hll2{Ci). We have provided a new and concise proof. 



Theorem 1 V is compactly embedded in L2(Ci)N. 

The proof makes use of Murat's div-curl lemma (see [8]). 

Lemma 1 (div-curl lemma).  Let U be an open subset o/R".  Let vn and 
w„ be weakly convergent sequences in L2(U)N with the limits v and w corre- 
spondingly. Assume that {divv«}^ and {curlwn}^ lie in compact subsets 
of H~X{U) and H~l(JJ)N   respectively.  Then for every <j> 6 V(U), 

/ <j>vn ■ wn ->  /  <j>v- 
Ju Ju 

Proof of Theorem 1. Let u„ be a weakly convergent sequence in V with the 
limit u. We want to show that un converges strongly in L2(fi). The idea is 
to extend un outside fi in two ways: vn and w„ will be the extensions with 
"good" divergence and curl respectively. We construct the extensions so that 
supp vn n supp wn C fi and then use div-curl lemma for these sequences. 

Let U be an open ball containing £1. We start with the construction of vn 

(the extension with divvn in a compact set of H 1(U)). For each n 6 N we 
denneff„6fl'1([/\n)by 

Agn = Q inU\n, 

—— = un • n   on öli, 
on 

9n =0 

Now define vn by 

and wn by 

Then 

and 

v„ = 

w„. = 

divv,, 

curl w,: 

ondU. 

un       in n 
Vgin    inU\n 

un    in Cl 

0      in U \ fi. 

divu,,,    in fi, 

0 in U \ n 

I curl un    in fi, 

1° inU\n 

so {divvn}£Li ^d {curlw«}^ are bounded subsets of L2(U) and L2(Ci)N', 
respectively (hence lie in compact sets of F_1([7) and ff-^fi)^'). Moreover, 
vn -»• v in L2(U)N and wn -

1 w in L2(U)N, where v and w are similar 
extensions of u. 



Now choose tj> e V(U) such that <p = 1 in fi. Using the div-curl lemma we 
get (note that vn • wn = 0 in U \ 0) 

/ u2= / ^vn-wn-> / 0vw =  / u2. 
Jn Ju Ju Jn 

This together with un ^ u in L2(fl) shows that u^ -* u in L2(Cl). 

We will use Peetre's lemma (see [2], for example) in the following form 

Lemma 2 Let E, E\ and E2 be Banach spaces. Let Ai and A2 he continuous 
linear operators from E to E± and from E to E2 respectively. Assume that there 
exists C > 0 such that 

||u||s <C(Piu||El+11^2^1^)   VueE. 

Assume abo that Kei^i = {0} and that A2 is compact. Then there is C\ > 0 
such that 

Hß^dlMHk Vue£. 
The coercivity result is then 

Lemma 3  There is C > 0, independent of v, such that 

o(v,v) >C||v||^    VveV 

Proof. We use Lemma 2 with E = V, Ex = L2{Ü) x L2{tt)N', E2 = L2{Q)N 

and Aiu = (div u, curlu), A2u = u. By Lemma 1 the operator A2 is compact. 
We must show that Ker Ai = {0}. But 

u € Ker Ai  <=> div u = 0 and curl u = 0 in fi, and u x n = 0 on T. 

This implies that u = 0 (by using the gradient potential, for example). So by 
Lemma 2 the result follows. 

The Lax-Milgram lemma now implies that (5) has a unique, stable solution 
inF. 

4    Weak Formulation in HQt(D,) 

For deriving the weak form of (3) we shall make additional assumptions about 
the smoothness of the boundary. In the following n is a bounded subset of Rw, 
N = 2 or 3, with a connected, Lipchitz and piecewise C1,1 boundary T, i.e. 

T = U]=1Tj with r,- n Fi= 0 for i ^ j, and F,-, j = 1,... ,n are of class C1'1. 
Let 7 denote the set of "edges and corners", i.e. 

n 

7 = [J (r.nr,). 



We assume that the jump of the normal on 7 is bounded below, i.e. there is 
5 > 0 such that for all x € 7 with x 6 Tj n 1^, i ^ j we have 

ni(x)-n'(x)<l-(51 (6) 

where n* (x) and n' (x) are the limits of the unit outer normals when approaching 
x from Ti and I\,, correspondingly. 

This condition is satisfied for all polygons and polyhedra. Also included are 
polygons and polyhedra with curved sides. It excludes three-dimensional bodies 
which have points like the tip of a cone, and bodies with edges which "flatten 
out", i.e. the angle between the faces gets arbitrarily close to ir. This condition 
is needed for proving some results about trace operators in the next section, 
and implicitly in the proof of Lemma 4, which gives the relation between the 
two weak forms. 

To obtain a suitable weak form for (3) we proceed formally, multiplying the 
equation by a test function v e ffot(n) and integrating by parts as usual. We 
get 

/vu.W-/J.v=ff.v. 
Jn JT dn Jn 

Rewriting the boundary term as a sum over the smooth boundary pieces and 
using the boundary conditions on u and v gives the weak problem: find u € 
#ot(fl) suchthat 

f Vu • Vv + V /  reu ■ v = f f • v   Vv € ff<Un). (7) 
Ja -=1 JTj Jn 

Since K 6 L°°(r7), by the usual trace theorem the boundary term is well de- 
fined. Note that, In this framework, the divergence boundary condition (or the 
equivalent one in problem (3)) is natural. 

Proving coercivity of the weak form (7) is a nontrivial matter because the 
curvature can be of either sign. The result will follow from the next lemma 
whose proof is deferred to the following section. 

Lemma 4 Assume that fJ satisfies the assumptions mode in the beginning of 
the section. For u,v 6 HQt(Ci) we have 

a(u, v) = / Vu • Vv + y\ /   KU ■ V, (8) 
Jn j^iJr> 

where Vj, j = 1,... , n are the smooth (C1,1) pieces of V, and a is the same as 
in (4). ' 

This means that the weak problem (7) is in fact equivalent to: Find u e 
H(jt(Cl) such that 

a(u,v)=  /f-v  Vve4(fi), (9) 
Jn 



in which the equation is the same as in (5) but the spaces are different. 
In fact, one can get (9) from problem (1), but they are not equivalent: 

in general we cannot assume that the solution of (1) belongs to HQt(ti), and 
we cannot prove later that the solution of (9) satisfies divu = 0. We can 
also formally get (9) from (2) by substituting — Au by curl curl u — Vdivu, 
multiplying by v and integrating by parts using the boundary conditions, but 
this is not easy to justify rigorously (for the solution of (2), curl curl u and 
Vdiv u may not be in L2). 

The coercivity result for (9) is: 

Lemma 5  There is C > 0 such that 

a(u,v)>C||u||i   Vuei4(Q). 

Proof. We use Lemma 2 with E = fl&(fl), Ei = L2(Q) x L2{Q)N', E2 = 
L2(Q)N x L2(T)N, Aiu = (divu,curlu) and A2u = (u,u|r). The operator 
A2 : E —► E2 is compact because it is bounded as an operator from E to 
Hl(Ci) x H1/2(T)N and the latter is compactly embedded into E2. We already 
showed (in the proof of Lemma 3) that Ker At = {0}. The result follows. 

Applying the Lax-Milgram lemma to the weak form (9) (or, equivalently, to 
(9)) and using the coercivity result above shows the existence of a unique stable 
solution to (9). 

Note that to prove the coercivity of a. in H^t(Ü)we ^° not neeQ tne additional 
smoothness assumptions made in the beginning of this section: they are needed 
to make sense of the term containing the curvature in (7) and to show later that 
the divergence boundary condition is satisfied for the solution of problem (9). 
They are not needed for uniqueness of solution of (9). 

5    Proofs for previous section 

This section will present the proof of Lemma 4. We will assume throughout the 
section that the assumptions made in the beginning of the previous section are 
satisfied. 

First we need some preliminary results. We begin by recalling some facts 
about the trace spaces. First, for Lipchitz F c RN, the following is an equivalent 
norm on Hl^2(T) (see e.g. [3]): 

ll#llaHV.(n - Mhm + 11 lH^:^)l2dS-dSy 

We will also need the spaces H^fij), j = 1,... ,n, which consist of all func- 
tions in Hll2{Tj) whose extension by zero to Y belongs to Hll2{T). The norm 
of a function in HQQ

2
(TJ) is the norm of its extension by zero in #1/,2(r), i.e. 



We will use the same notation for a function in H^fij) and its extension by 
zero to T. 

We will also need the following result: 

Lemma 6   The trace operator v i-> v-n|r., is a continuous linear operator from 

ff&fft) onto HKfVi). 

Proof. We use the fact that the usual trace operator v >-► v|r is a continuous 
linear operator from H1 (fl)N onto H1'2 (T)N. First we will show that if v x n = 0 
and the jump condition (6) is satisfied, then llv-nllHi/a(r.) < CIMInv^r)- Let 

<j> = v ■ n on Vj and <j> = 0 on T \ [\j. Clearly H^HHV«^) < IMl-ff1/2^)! so we 

have to show only that 

Because of the jump condition we can find e > 0 such that 

xeTj, yer\r,, |x-y|<e =► n(x) • n(y) < 1 --. 

For x € r,-, y € T \ Vj such that |x - y| < e we have 

|v(x) - v(y)|2 = |v(x)|2 + |v(y)|2 - 2(v(x) ■ n(x))(v(y) ■ n(y))(n(x) • n(y)) 

>Wx)|2+|v(y)|2-2Wx)||v(y)|(l-0 

>Wx)|a(l-(l-|)^=|«x)|a(*-^). 

62 

Since 6 > 0 (note that 0 < 5 < 2, otherwise the jump condition could not 

be satisfied), we have 

Jr\r.j 7r,\B»(y) lx - yl Mr, ir,nse(y) lx ~ yl 

< -L f r itw^dSy+-L_ / f |v(g:;,y|2^y 
e    ./r\r, Jr,- ° ~A 

Jr\ri Jvo      lx    yl 

<C7|h \H
1
/*{T)- 

Consequently, the operator v i-> v • n|r3- is a continuous Unear operator from 

Hlt{Ü) to H^Vi). 
Let 4> e H0^

2(r7) be given. Extend it by 0 to Y. Then ^n € H1'2^) and 
we can find v € Hl{ft)N such that v|r = <j>n and ||v||i < C||</>n||Hi/2(r) < 



Cill^ll „i/2(r v Clearly v 6 H^t(Ci), so the trace operator is onto. 

The next lemma gives a formula for calculating the divergence on the bound- 
ary. 

Lemma 7 For smooth u the restriction of div u to T7- satisfies 

,      , /\ 9u     \ 
div u|r3 = ( divrur + reu ■ n + — ■ n I 

where uT is the tangential component of u and divp is the divergence of a tan- 
gential vector field in the tangential coordinate system,. 

Proof. To calculate div u at some x0 € E\, let us fix a coordinate system i, j, 
k (if N = 2 then omit j), where i, j are tangent to T at x0 and k is the normal at 
x0 (we can do this for every xo in the interior of Vj). Denote ur = u — (u ■ n)n. 
Then 

.    .      du.    .   .     öu,    ,   .     du. 
divu(x0) = — (xo) ■ i + öj-(xo) • J + ^(x0) • k 

duT .    .   .     duT .    .   .     d[(u ■ n)n] .     9[(u • n)n] . 

+ ^(xo)-n(xo) 

= I divruT + KU • n + — ■ n I 

where 
,. ,    .     dur duT      .   . 
divruT(x0) = -öj-(xo) • i+ -^-(xo) -J- 

Now we can prove lemma 4: 
Proof of Lemma 4. For v 6 Hmfä) &n^ smooth u (we do not require 

u x n = 0 yet, because it does not seem straightforward to show the density of 
smooth functions with zero tangential trace in HQt(Ci)) we have 

/ curl u ■ curl v-f div u div v =  / curl curl u • v — Vdiv u • v +  /(divu)v-n 
Jn Jn JT 

= — / Au • v + / (div u)v ■ n 

= / Vu • Vv + /  [ div u — —— • n I v ■ n. 
Ja Jr\ dn     ) 

By Lemma 7 

/ curlu ■ curlv + divudivv =  / Vu-Vv + V" /   (divruT + rcu • n) v ■ n. 
Jn Jn j=iJri (10) 



For any <j> € F^2(r7) (extended by zero to T) we can find v 6 H^t(Ü) such 
that v!r = 6n and ||v||i < C||«/>|Li/2fr .. From (10) we get 

I (divruT + reu • n) <j> <CVIIiNli<^ll<f(r3.)Hi 

V<P € H^2(Tj), Vu smooth. 

By density of smooth functions in F^Q) and Hahn-Banach theorem we can 
continue the mapping u >->■ (divruT + reu ■ n)|r. uniquely to a continuous linear 

mapping from H^SI)" to (H^2(Tj))'. Since for any v € H^(p), v • n € 
H^2(Tj) (by Lemma 6), (10) holds for ah u 6 ff1^)" and v 6 H&t(Cl) (the 
integrals over T, have a meaning as a duality pairing between (H0'0 (r,))' and 

To finish the proof we need to show only that if u € H^t(Q), then divrur = 0 
on r,. For this first note that since u i-> «u ■ n|r,, is hnear and continuous from 
H1 (ß)N to L2(r?) c (ff,^2(r,-))',the °Perator u i-> divruT |F;/ is also continuous 

from Hl[(i)N to (ffoo2(ri))'i and then use the fact that 

(divruT^)r. = - /  uT-VT^ V^€Ci(r7) 

and the density of C\ (Tj) in Ä^pT,-). 

6    Equivalence of the Strong and Weak Forms 

In this section we will prove that (1) in V is equivalent to the weak problem 
(5), and that (3) in H^t(Q) is equivalent to the weak problem (7). It follows 
that problem (1) is uniquely solvable in V and problem (3) is uniquely solvable 
in #ot(n). We will also show that problems (2) and (3) are equivalent with the 
divergence boundary condition having a meaning in the sense of traces. 

Let us first deal with problem (1). 

Lemma 8 Let U and f be as in Section 2. Then the problem of finding u e V 
satisfying (1) is equivalent to solving the weak problem, (5). 

Proof. Let u € V be a solution of (1). Then -Au = curl curl u e L2(Q)) 
and so the formal calculations leading to (5) can be rigorously justified. 

Conversely, if u 6 V satisfies (5), then by using v € T>(ti)N and transferring 
all derivatives to v we get — Au = f in the sense of distributions. For any 
(j> e V{ti) we can find g e H^(Q) such that Ag = <j>. Now use v = Vg in the 
weak form (note that Vg € V). We get 

/(divu)^   [{.Vg = -  /(dlvf)S+  /(f-11)0 = 0, 
Jri Jn Jn JT 

10 



so div u = 0 in the sense of distributions. Consequently the problem (1) (in V) 
and the weak foim (5) are equivalent. 

Corollary 1   The problem (1) has a unique solution Uy in V. 

In the proof of the theorem we used the fact that Vg € V. If we were dealing 
with the weak form in Hgt(fi), then Vg may not have been a legitimate test 
function (in the case g £ H2(ti)), which would make it impossible to prove that 
div u = 0. This is the difference between the weak problems (S) and (9), even 
though they appear very similar. 

The corresponding proof for the problem (3) is a little more difficult, hut 
follows the same pattern. 

Lemma 9 Let H and f be as in Section 2. Assume in addition that the boundary 
T is piecewise C11 and the jump condition (6) is satisfied. Then the problem of 
finding u 6 Hlt(Q) satisfying (3) is equivalent to solving the weak problem (7). 

Proof. We first have to show that the boundary condition 

du „ 
—— • n + KU • n = 0  on r 
on 

has a meaning for u € #ot(n) wlth Au € L2(Q). Since Vu e L2(Cl)N and 

divVu € L2(Q), the gradient has a normal trace on the boundary — € 

H 1/2{T) (see [2] for example). For <j> e H^2{Cj) we have <j>n e Hl'2{T) 
(using the extension of <j> by zero) and therefore the boundary condition may be 
interpreted as 

{|H + KUt<j>n)r =ov^n tfoo/2(r,-), (ii) 
.7 = 1 

or, equivalently, 

<^ + «u,v)r = 0 Vv 6/^(0), (12) 

where {■, -)r is the duality pairing between H_1/2(r) and Hl/2{Y). 
Let u 6 Hlt(Cl) be a solution of (3). Using (12) we can justify to formal cal- 

culations leading to the weak form (7) (the boundary integrals in the weak form 
should be understood as duality pairings between (H^2(r,))' and HQ(

2
(TJ)). 

Conversely, if u € H^t{ft) satisfies (7), then by using v 6 V((i)N we get as 
before -Au = f in the sense of distributions. For any v 6 H^t(Cl), integrating 
by parts in the weak form (note that Au € L2(ti)N) we get 

- / Au-v+(-^,v)r + y^ /   MI-V= / f-v, 

hence (12) is satisfied. Consequently the problem (3) (in H^t(Ü)) and the weak 
form (7) are equivalent. 

11 



Corollary 2   The problem (3) has a unique solution u in Hlt{Cl). 

Now we will show that problems (2) and (3) are equivalent. The only dif- 
ference in these two problems is in the boundary condition, so we have to show 
that the divergence boundary condition makes sense and is equivalent to the 
boundary conditon in (3). This is done in the following lemma. 

Lemma 10 Assume ft satisfies ike conditions of Lemma 9. For u € H^f(£i) 
with Au € L2(Q)N, and any j € {1,... ,n}, the trace of div u on T,- exists and 

belongs to (H^ (I^-))', and 

9U      i i 

Proof. This follows from Lemma (7) which gives the formula for smooth u 
without the condition ux n = 0. By density this can be extended to u 6 H1 (fl)N 

with Au € L2(Q)N. Then use the fact that for u € H^t(Q) we have div rur = 0 
(see the end of proof of Lemma 4). 

Corollary 3 Problems (2) and (3) are equivalent. 

Let us summarize the results in a theorem: 

Theorem 2 Assume that Ü is a bounded subset of R,N with a connected, Lip- 
schitz boundary. Let f € L2(ß)N with divf = 0 be given.  Then 

a) The problem (1) in V is equivalent to the weak form (5) and has a unique 
solution Uy 6 V. 

b) If in addition the boundary is piecewise C1,1 and satisfies the jump con- 
dition (6), then the problems (2) and (3) in H^t(Q) are both equivalent to weak 
problems (7) and (9), and have a unique solution u# 6 Hlt (0). 

7    Relationship of the V and H$t(£l) Formulations 

Let uv € V be the solution of (5) (or the strong form (1 with the interior 
divergence condition) and let \iH € H^t(Cl) be the solution of (9) (which under 
the additional smoothness conditions is equivalent to problems (2) and (3) with 
the divergence boundary condition). In this section we will discuss when the 
two solutions are the same. The following is clearly true. 

Lemma 11 Let ft and f be as in Section 2. Assume in addition that the jump 
condition (6) is satisfied. Then the following are equivalent 

a) uv = uH; 
b) div Ujj = 0 in fl; 
c)uveH't(Cl). 

Let us now examine when uy = uH. First, note that lemma 5 implies 
that #ot(n) is closed in V. We have two possibilities: either V = H^t(ti) 
or V ^ H?jt(£l). In the first case the solutions are obviously the same (the 
corresponding weak forms are exactly the same). The following lemma gives 
the necessary and sufficient conditions for the equality of the spaces. 
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Lemma 12 Assume that fl is a bounded subset o/Rw with a connected Lip- 
schitz boundary. The spaces V and Hl)t(ß) are equal if and only if the homo- 
geneous Dirichlet problem for the scalar Poisson equation with any right hand 
side in V(il) has a solution in H2(Q). 

Proof. Suppose that the regularity condition holds. For any given w € V 
we can solve the weak problem: find u G Hot(H) 8UCQ tnat 

a(u,v) = a(w,v)   vv€ff^(0) (13) 

(i.e. u is a projection of w onto H^ti) corresponding to the scalar product 
<z(-, ■) ). As in the proof of Lemma 8 we can show that A(u - w) = 0, and 
using the ff2-regularity of the solution of the Diiichlet problem for the Poisson 
equation we also get div (u - w) = 0. Since (u- w) x n|r = 0, by the uniqueness 
of solution of (1) we have u = w, i.e. w 6 H^t{Cl). Consequently V = H£t(0). 

Now suppose that there is g 6 H^(Ü) such that A3 e V{ti), but g 0 H2(Q.). 
Then Vg € V, but VS i H^tt), so V ^ H^t(Ü). 

Note that the lemma remains true if one substitutes L2(f2) for V{£1). 

Corollary 4IfQ is convex or has a C1,1 boundary then V = H^t(Q,). 

This follows from the classical regularity theory about the smoothness of the 
solution of the Dirichlet problem for the Poisson equation. It is actually enough 
to assume that Q is locally convex near the points where the boundary is not 
C1,1 (i.e. these points have a neighborhood whose intersection with fi is convex). 

The question of the equality of these spaces (and analogous ones with a 
boundary condition for the normal trace) has been partly answered by different 
authors, but we are unaware of results as sharp as these presented here. In the 
classical book [2] it is proved that V = -Hdt(^) tf fi to a convex polygon or has 
a C1'1 boundary. Necessary and sufficient conditions for V = H(jt(Cl) to hold in 
R2 are given in [6], namely that the scalar Poisson equation with L2(Q) right 
hand side must have a solution in H2(Cl) both with Dirichlet and Neumann 
condition. As we saw, the regularity of solution of the Neumann problem is 
not needed, and in R2 it actually follows from the regularity of solution of the 
Dirichlet problem. 

In the other case, when H^t{0) and V are not identical, since HQf(Q) is 
closed, in V, there is f 6 L2(Q) with div f = 0 for which the solution of (1) is in 
V, but not in H^t(Ü). This means that the interior and boundary divergence 
formulations are not equivalent and give different solutions for this f. We will 
show how to construct f for which uy ^ uH whenever V ^ Hlt(Cl). 

Lemma 13 IfV ^ H^t(Q) than there is f £ L2(Q) with div f = 0 such that the 
corresponding solution of (1) is not in Hot(£l). 

Proof. If V 7^ Hlt (A) tnen we ean choose a nonzero weV such that 

a(w,v) = 0 Vveff^O). (14) 
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First note that curl w ^ 0: indeed, if we had curl w = 0 then 

divwdivv = 0 Vv e H^Q), (15) L in 

and hence (by using v e V(Q)N)), Vdivw = 0, oi divw =const.  It follows 
from (15) that /n div v = 0 for all v e H^t(Q), which is a contradiction. 

Now let f € V be a solution of 

a(f, v) =  / curl w ■ curl v Vv € V. (16) 
Jn 

Note that f ^ 0 and divf = 0.  We claim that for this f problem (1) has a 
solution uv €V which is not in H^t(Cl). Indeed, using the weak problem (5) 
and (16) we get 

a(u, w) =  / curl u • curl w = o.(u, f) = / |f j2 ^ 0, 
Jo Jn 

which by (14) implies that uv & Hgt(Ü). 

We can also give a more tangible example of a solution of (1) which does 
not belong to H^t(Q). Suppose fi c R3 is such that in a neighborhood of some 
xo 6 r its boundary consists of 2 planes with the interior angle a > TT. Choose 
a cylindrical coordinate system (r,9,z) with the origin at x0l z-axis along the 
edge and 6 = 0, 9 = a on the boundary. Let <j> 6 C°°(n), depending on r and 
z only, be such that r^ = 1 near the origin and <j> = 0 outside a neighborhood of 
the origin where the pieces of r are planar. Put 

u(x, y, z) = curl I <j>(r, z)r*'a cos — ez j 

where ez is the unit vector in direction of z-sxis. Then div u = 0 and 

u x n = —- ( Mr, z)rvla cos — 1 ez — 0 on T. 
an V a / 

It follows that u is a solution of (1) with f = -Au € L2(Q) and divf = 0. In 
addition, f = 0 near the origin. Since u £ H^t(H) and the problem (2) with the 
same f has a solution ü € H^t(0), we must have u^u and div ü ^ 0. 

This example is essentially two-dimensional. To make it work for (IcR2 

in a neighborhood of a corner with the interior angle a > TT we just use <j> 
independent of z.   Note that the third component of u is zero, and we get 
f eC°°(n)2. 

We will state these results as a theorem: 

Theorem 3 Assume that fl is a bounded subset o/R" with a Lipschitz bound- 
ary.  The following are equivalent: 

a) Uv = Uff for any f 6 L2(Q)N with divf = 0; 
b)V=HM; 
c) the Dirichlet -problem for the scalar Poisson equation with any smooth 

right hand side has a solution in H2(fo). 
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8    Generalization to Helmholtz equation 

Most of the arguments above remain true in case of Helmholtz equation. The 
only difference is in the coercivity, which now will not be sufficient for using 
Lax-Milgram. Let UB sketch the results briefly. The analog of problem (1) is 
now: find u &V such that 

'-Au-fc2u=f   infl, 
divu = 0 inG, (17) 
u x n = 0 on T. 

We assume that f e L2(Q)N and the compatibility condition divf = 0 is satis- 
fied. To formulate the weak problem let us define 

6(u, v) =:  / curlu • curlv + divudivv - k2u ■ v Vu, v 6 V. 
Jn 

Then the weak problem corresponding to (17) is to find u eV such that 

6(u,v)= /"f-v VveV. (18) 

The coercivity result is that b(u,u) > C||u||^ - A;2||u||22 (if k2 is complex, 
we should use the real part). We cannot use Lax-Milgram directly. Instead 
we can use the Fredholm alternative to show the existence and uniqueness of 
the solution. Define operator Av : L2(0) -> L2(0) by the requirement that 
Avg e V is the solution of a(u, v) = /n g • v Vv € V (note that we do not need 
the compatibility condition div g = 0 to guarantee the solvability of the weak 
problem). By the Lax-Milgram Lemma and the compact embedding theorem 
(Theorem 1) Av is a compact operator. Then the solution of (18) is the solution 
of u = Av{k2u + f), and if 1/fc2 is not an eigenvalue of Av then (18) has a 
unique solution u€V. The operator Av has two kinds of eigenfunctions: ones 
that are divergence-free, and others which are gradients of the eigenfunctions of 
the scalar laplacian with Dirichlet boundary conditions. Assuming that 1/k2 is 
not an eigenvalue of Av, one can prove the equivalence of the strong and weak 
problems similarly to the proof of Lemma 8 (in proving that the solution of the 
weak form satisfies the divergence condition we need solvability of the scalar 
Helmholtz equation with Dirichlet boundary conditions, which follows from the 
fact that if 1/fc2 is not an eigenvalue of Av, then it is not an eigenvalue of the 
scalar laplacian with the Dirichlet boundary conditions). 

The analog of problem (2) is to find u e H^t{Ü) such that 

'-Au-fc2u=f   inn, 
'divu = 0 onT, (19) 
uxn = 0 on T 

and the corresponding weak problem is to find u € H(5t(fJ) such that 

b(u,v) = /f-v Vv 6 ff<Jt(n)- (20) 
Jn 
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One can deal with the coercivity as above, using the operator AH : L2(Ci) —> 
L2(Q) denned by: AHg 6 H^t{fl)(is the solution of a(u,v) = /g-vVv € H%t(Q). 
Equivalence of the strong and weak forms follows similarly to the zero frequency 
case. 

The question when the two weak problems (18) and (20) give the same 
solution can be answered as in section 7. Most of the results presented there do 
not depend on the frequency. The counterexamples are also easy to modify: if 
uv 0 H^t(Q) is a solution of (1), then it is also a solution of (17) with the right 
hand side f - k2uv ■ Theorem 3 remains true if we assume in addition that 1/fc2 

is not an eigenvalue of either Ay or AH and let Uy and u^ be the solutions of 
the weak problems (18) and (20) correspondingly. 

Similar results can be proved for time-dependent problems, such as vec- 
tor wave equation and Maxwell's equations. Even with divergence-free initial 
conditions, using a weak form in H^t(Cl) (similar to (20)) may give a solution 
not satisfying the divergence constraint. Again, this can happen only if the 
ff2-regularity of the Dirichlet problem for the scalar Poisson equation fails. 

9    Conclusions 

We saw that in some cases (e.g. for nonconvex polygons) the boundary diver- 
gence formulation is not equivalent to the interior divergence formulation, and 
the weak form (9) or (20) (the weak forms in H^t(Q)), while uniquely solvable, 
may not have a divergence-free solution. In this case all approximation meth- 
ods based on these weak formulations (e.g. the usual finite element method, 
the least squares method) will converge to a spurious solution (not satisfying 
the divergence constraint). To avoid the spurious solution, one should use the 
weak form in V, but this is not straightforward: one has to use basis functions 
which are in V, but not in #ot(0) (e.g. the singular solutions around the re- 
entrant corners), in addition to the usual ones. The same is true about the 
penalty method, where the weak form contains a penalty parameter in front 
of the term with divergence. If the solution of the original problem is not in 
#ot(n), then any choice of the penalty parameter will result in a spurious solu- 
tion — in fact, the smaller one makes the divergence (by choosing larger values 
of the parameter), the bigger the error is in the curl of the solution. 

On the other hand, when the formulations are equivalent (this is the ease 
when the solution of the Dirichlet problem for the scalar Poisson equation is in 
H2(£l)), then one can use the weak forms in H^{Ü). This enables one to use 
simpler algorithms, e.g. finite element methods with piecewise linear test and 
trial functions. The equivalent formulation in terms of gradients (as in (7)) may 
be especially useful, since it decouples the field components inside the domain. 
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